N7T1-32229

NASA TECHNICAL NASA TM X-67891
MEMORANDUM

NASA TM X-67891

CRACK SHAPES AND STRESS INTENSITY FACTORS
FOR EDGE-CRACKED SPECIMENS

by Thomas W. QOrange
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER proposed for presentation at
Fifth National Symposium on Fracture Mechanics
University of Illinois, Champaign, Illinois,
August 31 - September 2, 1971




E-6249
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A simple stress intensity factor expression is given for a deep edge
crack in a plate in rension. The shapes of cracks opened by tension or
bending are approzimared by conic sectiong, and the conic section coeffi~
cients related to plate geometry by very simple empirical equations. The
magnitude of the crack displacement is a function of applied load, plate
geometyry, and the slastic constants the plate material., The shape of
a loaded crack in 2 semi-infinite plate iz, approximately, a portion of
an ellipse whose semimajor axis is about three times the crack length.

As the crack length (relative to the plate width) increases, the crack
shape becomes parabolic, then hyperbolic, the acuity of the hyperbola in-
creasing with the velative crack length.
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INTRODUCTION

The preoblem of a crack in the edge of a strip or a plate under normal
tension or bending is of dinterest to materials engineers as well as to
structural analysts. For maximum uvtility in both fields, expressions for
the stress intensity facror are needed over the widest possible range of
the ratio of crack length to plate width. The effects of loading and
ateys on the shape of the opened crack arve of funda-

STRESS INTENSITY FACTOR FOR A DEEF EDGE CRACK IN A TENSION SPECIMEN

Wilson [1] has shown that ccllocation results for bend and compact
tension specimens can be extrapolated to &a/W = 1.0 by expressing them
in the form of appropriate dimensionless parameters. A similar comstruc—
tion is also possible for the edge crack in pure tension. When the di~
mensionless parameter

3/2

KB (W - a)
r (W + 3a)

is computed from
seen to rapidly appr
pression

wrion vesults [2,3] and plotted (Fig. 1), it is
a value of 0.5 with increasing a/W. The ex-
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is within 1 percent of the referenced collocation results for a/W > 0.3.
It is of interest to note that (1) for the tension specimen and

Wilson's expressions for the bend and compact tension specimens converge
as a > W. In these equations a common dimensionless pavameter 1is

e
1+ 3a/W ) »
A (tension specimen)
\3/2
KB (W = a) = {4 (bend specimen)
3+ 3a/0 {(compact tension specimen)
S a/W

where M is the nominal bending moment (taken to be P(W + a)/2 for the
compact specimen or Pa/2 for the pure tension specimen). This param-
eter, computed from collocation results and from the extrapolation equa-
tions, is plotted in Fig. 2 where the convergency can be readily seen.
This indicates that the stress state for a very deep crack approaches one
of pure bending regardless of the manner of loading.

THE SHAPE OF AN EDGE CRACK OPENED BY PURE' TENSION OR BENDING

It is generally well known that the opening-mode elastic stress
field near the tip of a crack may be completely described by the stress
intensity factor and appropriate coordinate functions. It is less well
known that the stress intensity factor also describes the displacements
of the crack surfaces near the crack tip. That is, near the crack tip
the stress intensity factor describes not only the stresses in the un-
cracked region but also the deflections in the cracked region. If only
the first term of the displacement function [4] is considered, & flat
crack opens under load into a parabola whose tip radius is (ewactly)

2 2
. = ﬁ_(l - ) KZ (2)
il E -
where E 1is Young's modulus and v 1is Poisson's ratio. Since :the tip
radius is a significant feature of the entire crack profile, the consid-

eration of crack shape may prove useful.

No analytical expressions are available for the shape o an edge
crack in a finite~width plate under normal tension or bending The shape
of an edge crack in a semi-infinite plate under remote no l rension is
given by Wigglesworth [5] in the form of an infinite seri Uaing

boundary collocation, Gross [3] computed opening displacements under
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normal tension or bending for edge cracks 30, 50, and 70 percent of the
plate width. The crack shapes for these cases could be described by =2
polynomial of sufficiently high order in two variables (distance from
crack tip and relative crack length). However, such a function would
probably be cumbersome to use, and the influence of the individual coef-
ficients on the crack shape would be difficult to visualize.

Although these crack shapes may not be exact conic sections, it is
expedient to model them as such. Then only a single conic section coef-
ficient needs to be correlated with the relative crack length. The gen-
eral equation of a conic section with the origin at the vertex can be
written as

2 2
L) - s @

where the notation is given in Fig. 3 and m 1is the conic section coef-
ficient. The physical interpretation of the coefficient m is as
follows:

. 2 2
m= -1 an ellipse, (n/no) =1-(1-y/a)

-1 <m <0 a portion of an ellipse (semimajor axis, -a/m)

m= 0 a parabola, (U/ﬂo)z = Y/a
0<m<«<w an hyperbola (origin at y = -a/m)
m = a pair of straight lines, (n/no) = ty/a

This can be seen in (Fig. 3), where (3) is plotted for three values of m
and the limiting case m = o,

After suitable differentiation of (3), the expression
ng = ar(2 + m) (&)

is obtained for the conic section model, where r dis the crack tip
radius (radius of curvature at y = 0). .This equation shows the inter-
relationship between mouth displacement, tip radius, and the conic sec~
tion coefficient. Any two of these three terms are sufficient to define
the conic section. Equation (4) may be put in another useful form using
(2) and the form equation

K = Yo/a
where o is P/BW in tension or 6M/BW? in bending, M is a bending

moment opening the crack, and Y is the dimensionless stress intensity
factor (calibration factor). Thus (4) becomes
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where the dimensionless mouth displacement is given in terms of the cali-
bration factor and the conic section coefficient.

The conic section model (3) was compared with the available crack
profiles [3,5] as follows. Using collocation values [6] or the exact
solution [5] for the dimensionless mouth displacements and the calibra~
tion factor expressions of Brown and Srawley [7], Wilson [1], and (1),
conic section coefficients were computed from (5). These are plotted
against the relative crack length in Fig. 4 (the curves shown will be
discussed later), and may be seen to increase with increasing relative
crack length. Using these calculated coefficients in (3), relative
crack displacements (n/n,) were computed at y/a = 0.1, 0.2, 0.3, . . .,
0.9. These were within 3.2 percent of corresponding displacements deter-
mined from Wiggleworth's solution [5], Gross's collocation results [3],
and unpublished collocation results (B. Gross, NASA Lewis Research
Center; a/W = 0.2, 0.4, and 0.6). Thus the shape of edge cracks opened
by bending or tension can be very closely approximated by the conic sec-
tion model.

The effect of relative crack length on crack shape can be seen in
Fig. 5. 1In a semi-infinite plate the crack shape is (approximately) a
portion of an ellipse whose semimajor axis is about three times the crack
length. The Wigglesworth sclution is also shown here for comparison.
As the relative crack length increases, the crack shape becomes parabolic,
then hyperbolic, the acuity of the hyperbola increasing with the relative
crack length. As would be expected, this trend is more pronounced for
the case of pure bending than for pure tension.

SOME SIMPLE APPROXIMATE EXPRESSIONS
As can be seen in Fig. 4, the simple expression
m = -0.3 + 15(a/W)" (6)

(where n is 2.3 for bending or 3.3 for tension) is a fairly good
approximation over the range of the available solutions (0 < a/W < 0.7).
Extrapolation of (6) beyond a/W = 0.7 is somewhat questionable at
present, since collocation results are not available for comparison.
Crack displacements are likely to be very sensitive to geometry in this
range, and (6) may be overly simple. It was shown earlier that the
stress state for very deep cracks (a - W) approaches one of pure bending
regardless of the manner of loading. If the stress state is unique, the
crack profile should also be unique. Thus the conic section coefficients
for tension and bending should converge as a - W. In this respect the
form of (6) is proper.
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Equation (3) gives only the relative crack displacements. An ex-
pression for the mouth .displacement, n0,='f(a/w), is needed to determine
absolute values. This could be obtained by fitting a polynomial in. a/W
to: available collocation solutions [3,6]. However, a simple approxima- -
tion can be made by substituting (6) into (5). The dimensionless mouth
displacement so calculated is compared with collocation values [6] in
Fig. 6, and the maximum error is 3.7 percent (bending) or 2.9 percent
(tension) for a/W <.0.7. Extrapolation beyond a/W = 0.7 is not rec-
ommended. o

SUMMARY

A simple stress intensity factor expression is given .for an edge
crack deeper than 30 percent of the width of a plate in tension. The
'shapes .of edge cracks opened by tension or bending can be closely approx-
imated by conic sections. The conic section coefficient can be related
to the . relative crack length by very simple empirical equations. The.
magnitude of the crack displacements is a function of applied load, plate
geometry, and the elastic constants of the plate material.

‘The shape of a loaded crack in a semi-infinite plate is, approxi-
mately, a portion of an ellipse whose semimajor axis is about three times
the crack length. As the crack length (relative to the plate width) in-
creases, the.crack shape becomes parabolic, then hyperbolic, the acuity
of the hyperbola increasing with the relative crack length.. This trend.
is more pronmounced for the case of pure bending than for pure tension.
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Figure 1. - Dimensionless stress intensity factor from
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Figure 3. - Conic sections, eq. {3).
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Figure 2. - Dimensionless stress intensity factor.
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Figure 5. - Normalized crack shapes from équations (3) and (5) and an exact solution.
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Figure 6. - Effect of relative crack length on the plane-strain crack
mouth displacement.
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